Bots Recognition in Social Networks Using the Random Forest Algorithm
نویسندگان
چکیده
منابع مشابه
fault location in power distribution networks using matching algorithm
چکیده رساله/پایان نامه : تاکنون روشهای متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روشها در شبکه توزیع به دلایلی همچون وجود انشعابهای متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تکفاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...
Diagnosis of Diabetes Using a Random Forest Algorithm
Background: Diabetes is the fourth leading cause of death in the world. And because so many people around the world have the disease, or are at risk for it, diabetes can be called the disease of the century. Diabetes has devastating effects on the health of people in the community and if diagnosed late, it can cause irreparable damage to vision, kidneys, heart, arteries and so on. Therefore, it...
متن کاملPrediction of PKCθ Inhibitory Activity Using the Random Forest Algorithm
This work is devoted to the prediction of a series of 208 structurally diverse PKCθ inhibitors using the Random Forest (RF) based on the Mold(2) molecular descriptors. The RF model was established and identified as a robust predictor of the experimental pIC(50) values, producing good external R(2) (pred) of 0.72, a standard error of prediction (SEP) of 0.45, for an external prediction set of 51...
متن کاملFacial Recognition using Modified Local Binary Pattern and Random Forest
This paper presents an efficient algorithm for face recognition using the local binary pattern (LBP) and random forest (RF). The novelty of this research effort is that a modified local binary pattern (MLBP), which combines both the sign and magnitude features for the improvement of facial texture classification performance, is applied. Furthermore, RF is used to select the most important featu...
متن کاملGesture Recognition Using Template Based Random Forest Classifiers
This paper presents a framework for spotting and recognizing continuous human gestures. Skeleton based features are extracted from normalized human body coordinates to represent gestures. These features are then used to construct spatio-temporal template based Random Decision Forest models. Finally, predictions from different models are fused at score level to improve overall recognition perfor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mechanical Engineering and Computer Science
سال: 2019
ISSN: 2587-9278
DOI: 10.24108/0419.0001473